Все с нетерпением ждут конца «нерабочих дней», периода «социального дистанцирования» или «локдауна» — в зависимости от того, как в конкретной стране называют противовирусные меры. Марк Липсич, профессор кафедры эпидемиологии Гарвардского университета, предупреждает — распространение болезни не остановится до тех пор, пока в популяции не будет достаточно уязвимых перед коронавирусом людей. Эпидемия не прекратится, пока большая часть из нас не переболеет — или пока не появится вакцина. Но почему её до сих пор нет? Давайте разбираться.

На 11 мая 2020 года* сотрудникам Всемирной организации здравоохранения (ВОЗ) известно о 102 кандидатах в антикоронавирусные вакцины — причём восемь вакцин уже проходят клинические испытания на здоровых людях. Однако реальное число вакцин-кандидатов может быть больше: в список ВОЗ попали далеко не все компании, которые пытаются создать «волшебную пилюлю» против COVID-19.

Принцип действия уже существующих и ещё только разрабатываемых вакцин основывается на нескольких способах вызвать в организме иммунный ответ, причём у каждого способа есть свои преимущества и недостатки. Предсказать, какой тип вакцин сработает лучше, до начала клинических испытаний на людях невозможно — так что фармацевтическим компаниям приходится действовать практически вслепую, пробуя разные способы. Но может быть, это и к лучшему: если вакцины одного типа окажутся неэффективными или небезопасными, всегда есть шанс, что вакцины другого типа сработают лучше.

Вирусные вакцины

Вакцины на основе ослабленного вируса

Что это? Вакцина, в состав которой входит очень сильно ослабленный (иначе говоря, аттенуированный) в лаборатории вирус SARS-CoV-2. Вакцины такого типа известны с 1950-х годов: принцип лежит в основе прививок против кори, эпидемического паротита, краснухи (MMR) и ветряной оспы.

Каков механизм действия? Для создания вакцины сотрудники лаборатории используют вирус, которым последовательно заражают лабораторных животных. Дело в том, что вирусы приспосабливаются к тому хозяину, в чьём организме оказались. Если насильно «переселить» человеческий вирус в клеточную культуру животных, вирус начнёт мутировать. Таким образом, после каждого цикла заражения вирус будет всё лучше приспосабливаться к новому хозяину — и одновременно становится всё менее опасным для человека. При этом мутировавший «под животное» вирус остаётся всё ещё достаточно похожим на исходный «человеческий», чтобы вызвать у привитого человека полноценный иммунный ответ. Если привитый человек заразится исходным, «диким» вирусом, его иммунная система уже будет готова к встрече и быстро справится с болезнью.

Что хорошего в этой вакцине? Иммунитет от такой прививки держится дольше всего. В случае COVID-19 это особенно важно, потому что к коронавирусным инфекциям не всегда формируется стойкий иммунитет.

В чём проблема с вакциной? Мы очень мало знаем о том, как мутируют вирусы, так что процесс создания «живой» вакцины во многом непредсказуем. Всегда есть шанс, что ослабленный вирус вернёт себе силу и снова научится вызывать болезнь. Чтобы этого не произошло, приходится очень тщательно исследовать вирусы и организовывать скрупулёзные клинические испытания полученной вакцины, которые займут несколько лет. Если удастся создать «живую» вакцину, у неё будет много преимуществ — но такой препарат появится ещё не скоро.

Кто занимается вакциной и на каком она этапе? О начале разработки вакцины на основе ослабленного вируса американская компания Codagenix (разработка ведётся совместно с Индийским институтом сывороток) объявила 13 февраля 2020 года. По данным ВОЗ, на 11 мая 2020 года* вакцина находится на фазе доклинических испытаний — то есть её либо ещё не создали, либо испытывают на лабораторных животных.

Инактивированные вакцины

Что это? Вакцина, в состав которой входят инактивированные — то есть не способные заражать клетки — вирусы. Это тоже старый и проверенный тип вакцин — принцип лежит в основе прививок от полиомиелита и коклюша.

Каков механизм действия? Чтобы создать вакцину, вирусы инактивируют — нагревают, обрабатывают ионизирующим излучением или дезинфектантами. Хотя белки «убитых» вирусов изменяют форму (то есть денатурируют), их химический состав остаётся прежним, а сами вирусные частицы отчасти сохраняют первоначальную форму. «Мёртвые» вирусы тоже могут вызывать иммунный ответ.

Правда, у таких вакцин есть два недостатка. Во-первых, такие вакцины обычно вызывают слишком слабый иммунный ответ, так что приходится применять вещества — «усилители иммунной реакции»: адъюванты. Задача адъювантов — помочь иммунным клеткам (В-лимфоцитам) выработать больше защитных белков-антител.

В качестве универсального адъюванта в большинстве вакцин используют соли алюминия — однако вакцины с алюминием не помогают предотвращать вирусную инфекцию. Методом проб и ошибок учёные убедились, что противовирусные вакцины способны усиливать адьюванты-виросомы. Это «чучела вирусов» в виде липидных наночастиц — микроскопических капелек жиров-фосфолипидов, на поверхность которых «прицеплен» вирусный белок-антиген. Иммунные клетки принимают «чучела» за настоящие вирусы и реагируют на них более энергично, чем просто на вирусные белки-антигены.

Во-вторых, «учебный материал» для иммунной системы в конце концов заканчивается, так что полученный иммунитет не такой стойкий, как при применении вакцин на основе ослабленного вируса, способного некоторое время размножаться в организме. Чтобы поддержать иммунитет, приходится прибегать к повторной вакцинации.

Что хорошего в этой вакцине? Инактивированные вакцины безопаснее «живых» — ведь в них нет ослабленного вируса, который может мутировать.

В чём проблема с вакциной? Скорее всего, инактивированная вакцина к SARS-CoV-2 будет вызывать слабый иммунный ответ. Чтобы она работала хорошо, для неё придётся подбирать эффективный адъювант — то есть искать оптимальные параметры фосфолипидной капли-виросомы. Это потребует дополнительного времени и усилий.

Кто занимается вакциной и на каком она этапе? По данным ВОЗ, на 11 мая 2020 года* наибольших успехов в создании инактивированной вакцины достигли китайские разработчики. Так, компания Sinopharm готовит сразу две вакцины. Препарат, создаваемый в сотрудничестве с Уханьским институтом биопрепаратов (Wuhan Institute of Biological Products), находится на первой фазе клинических испытаний — переносимость вакцины проверяют на здоровых людях.

Больше всего информации об инактивированной вакцине от компании Sinovac, который тоже находится на первой фазе клинических испытаний. Эта компания сотрудничает с американской компанией Dynavax, которая передала Sinovac эффективный адъювант, хорошо показавший себя в вакцине против гепатита В, так что неудивительно, что китайский разработчик вырвался вперёд, ведь это экономит ему массу времени.

19 апреля компания Sinovac опубликовала препринт — предварительный вариант статьи, в которой показала, что её вакцина работает: стимулирует образование антител против 10 штаммов SARS-CoV-2 у мышей, крыс и макак-резусов. Хотя радоваться всё-таки рановато — мы ещё не знаем, как вакцина покажет себя на людях.

Векторные вакцины

Что это? Вакцины на основе совершенно иных вирусов (например, аденовирусов), в которые встроен небольшой ген — участок генома SARS-CoV-2. В результате в составе оболочек безобидных вирусов (их называют вектором, то есть транспортом для доставки в клетки) появляются белки-антигены SARS-CoV-2.

Каков механизм действия? Попав в организм вместе с вакциной, генетически модифицированные вспомогательные вирусы провоцируют иммунный ответ на белки SARS-CoV-2, то есть работают примерно как «живые» вирусные вакцины.

Теоретически можно попытаться создать векторные вакцины двух типов: на основе способных и не способных размножаться в организме вирусных частиц. Скорее всего, вакцины на основе вирусных частиц, способных к размножению внутри клеток организма-хозяина, будут дольше защищать от коронавируса. Однако до стадии клинических испытаний на людях пока дошли только вакцины с вирусами, к размножению не способными.

Что хорошего в этой вакцине? Согласно замыслу разработчиков, векторные вакцины должны работать так же хорошо, как живые, но при этом они не смогут мутировать.

В чём проблема с вакциной? Векторные вакцины на основе ослабленного генномодифицированных аденовирусов недостаточно изучены. Попытки разработать векторные вакцины для борьбы с раком, вирусами ВИЧ, гриппа и Эболы уже предпринимались, но пока ни одна не была одобрена для людей.

Кто занимается вакциной и на каком она этапе? По данным ВОЗ, на 11 мая 2020 года* векторными вирусными вакцинами занимаются два сильных игрока.

Китайская компания CanSino Bio совместно с Пекинским биотехнологическим институтом (Beijing Institute of Biotechnology) разрабатывает вакцину Ad5-nCoV на основе модифицированного аденовируса 5-го типа. Вакцина находится во второй фазе клинических испытаний, то есть уже начались испытания вакцины на реальных пациентах. Пока CanSino Bio лидирует в «вакцинной гонке», но это пока ни о чём не говорит, ведь результатов первой фазы испытаний мировое медицинское сообщество до сих пор не видело. Не исключено, что с вакциной есть целый ряд не заявленных проблем.

Второй сильный игрок — английский Оксфордский университет (University of Oxford), который разрабатывает векторную вакцину на основе модифицированного аденовируса шимпанзе ChAdOx1. Вакцина находится на 1-2-й фазе клинических испытаний, то есть её тоже уже тестируют на реальных пациентах. О ChAdOx1 пока ничего не известно. Но другой оксфордский продукт, основанный на том же принципе, — вакцина против MERS-CoV, «двоюродного брата» вируса SARS-CoV-2, — вроде бы работает, и проблем с безопасностью у неё не было.

Вакцины на основе нуклеиновых кислот

ДНК-вакцины

Что это? Вакцина, которая содержит кольцевую молекулу ДНК (плазмиду), где записаны инструкции по созданию вирусного белка.

Каков механизм действия? Попав в клетки привитого человека, кольцевая ДНК станет частью их генома. В результате клетки организма-хозяина получат новую инструкцию, по которой начнут «штамповать» вирусные белки-антигены — и на них будет формироваться иммунный ответ.

Чтобы кусочек ДНК с информацией о вирусных белках наверняка проник в клетки, его можно встроить в геном безобидного вируса-носителя. Этот вирус работает как «внутриклеточный шприц» — забрасывает в клетку свой модифицированный геном, который потом встраивается в ядро (в отличие от векторных вакцин, здесь от безобидного вируса используется только оболочка).

Что хорошего в этой вакцине? Преимущества такие же, как у векторных вакцин: иммунитет такой же стойкий, как у «живых» вирусных вакцин, но без присущих им недостатков. Поскольку в качестве вируса-носителя для плазмиды берётся совсем не SARS-CoV-2, нет опасности, что ослабленный вирус мутирует и снова будет вызывать болезнь.

В чём проблема с вакциной? ДНК-вакцины плохо изучены. Пока применяется всего одна вакцина такого типа — прививка от вируса Зика для лошадей. Ни одна ДНК-вакцина пока не получила разрешения на использование на людях.

Кто занимается вакциной и на каком она этапе? По данным ВОЗ, на 11 мая 2020 года* компания Inovio Pharmaceuticals (Пенсильвания, США) создаёт ДНК-вакцину INO-4800 — только на основе ДНК-плазмид, без модифицированных вирусов-носителей. INO-4800 — так называемая ДНК-вакцина с электропорацией. Чтобы загнать плазмиду в клетки мышц или кожи, на них нужно будет воздействовать электрическим полем, которое на время сделает клеточные мембраны более проницаемыми. Чтобы сделать такую прививку, простого шприца будет недостаточно — потребуется специальный прибор-электропоратор. Эта вакцина находится в первой фазе клинических испытаний, результаты испытаний ожидаются в июне.

РНК-вакцины

Что это? Вакцина, которая содержит вирусную молекулу, по структуре похожую на ДНК — матричную РНК (мРНК). Эта молекула — шаблон, с которого напрямую считывается вирусный белок. В клеточный геном мРНК не встраивается.

Каков механизм действия? Заключённая в липидную наночастицу мРНК попадает в организм вместе с вакциной. Затем липидная частица сольётся с мембраной клетки-мишени, а её содержимое попадёт в клетку и превратится в шаблон для синтеза вирусных белков-антигенов. В результате собственные клетки организма начнут синтезировать вирусные белки, притом что вирусная ДНК в клеточный геном встраиваться не будет.

Что хорошего в этой вакцине? Помимо преимуществ, общих с ДНК-вакцинами, липидные частицы с мРНК внутри похожи на вирус, так что сами по себе могут вызывать иммунный ответ. Есть шанс, что из-за «двойного действия» иммунитет от РНК-вакцин будет возникать раньше и держаться крепче. Кроме того, короткая мРНК — очень простая молекула, поэтому создать её можно относительно быстро и недорого — с помощью специальных синтезаторов.

В чём проблема с вакциной? Это абсолютно новая вакцина — так что мы понятия не имеем, как она будет себя вести в человеческом организме. Более старых вакцин подобного типа в принципе не существует.

Кто занимается вакциной и на каком она этапе? По данным ВОЗ, на 11 мая 2020 года* в создании РНК-вакцин дальше всего продвинулись две компании. Американская компания BioNTech заключила контракт с фармацевтическим гигантом Pfizer. Однако помимо того что компания получила разрешение на начало 1-2-й фазы клинических испытаний в Германии, о вакцине известно мало. Тем не менее представители сообщили, что их вакцина может быть готова уже к осени 2020 года.

Больше информации о вакцине — от американской компании Moderna, которая сотрудничает с Научно-исследовательским центром вакцин (NIAID). Вакцина называется мРНК-1273. Недавно закончилась первая фаза испытаний, в которой участвовало три варианта вакцины с концентрацией мРНК 25, 100 и 250 микрограммов. Сейчас компания подала заявку на вторую фазу испытаний, в которой будет участвовать вакцина в дозировках 50 и 250 микрограммов — возможно, именно такие дозировки оказались наиболее эффективными.

Кроме того, в середине марта о начале разработки РНК-вакцины объявила российская биотехнологическая компания BIOCAD. Разрабатываться будет три варианта вакцины с разными дозировками мРНК. Первые испытания на животных планировалось начать в конце апреля.

Белковые вакцины

Что это? Вакцина на основе белков-антигенов, то есть «кусочков» вируса.

Каков механизм действия? Попадая в организм вместе с вакциной, смесь вирусных белков-антигенов провоцирует иммунный ответ.

Что хорошего в этой вакцине? Такая вакцина безопасна для организма, поэтому её можно быстро протестировать и пустить в дело.

В чём проблема с вакциной? Очень сложно получить достаточно вирусных белков, чтобы их хватило на вакцину. Кроме того, иммунитет к таким вакцинам, скорее всего, будет нестойким — примерно как в случае с инактивированными вакцинами.

Кто занимается вакциной и на каком она этапе? По данным ВОЗ, на 11 мая 2020 года* ни одна белковая вакцина ещё не перешагнула порог доклинических испытаний. А если и перешагнёт, то маловероятно, что такие вакцины станут массовыми. Хотя в теории возможность производства вирусных белков в большом количестве существует — например, у компании Sanofi есть технология, позволяющая «штамповать» белки вирусов гриппа в клетках гусениц. Но делать вакцины таким способом очень дорого и сложно.

Почему вакцины разрабатывают так долго

Создавать вакцины очень сложно и дорого. Создание вакцин требует не только высококвалифицированных кадров и больших финансовых вложений в исследования, проблема ещё и в налаживании производства. Чтобы вывести вакцину на рынок, небольшие компании-разработчики должны будут договориться с крупными фармацевтическими компаниями, которые смогут выпускать компоненты для лекарства крупными партиями. При этом производство вполне эффективной вакцины может оказаться слишком сложным, чтобы стать массовым — мы уже видели это на примере белковых вакцин. Из-за производственных сложностей до потребителей не доходит 95% вакцин, успешно прошедших клинические испытания.

Клинические испытания вакцин занимают много времени. Успешная вакцина — препарат, который будет применяться у десятков тысяч, а возможно, и миллионов людей. Поэтому все кандидаты в вакцины должны проходить тщательную проверку не только на эффективность, но и на безопасность, ведь при таких огромных объёмах даже редкие побочные эффекты становятся весьма вероятными.

Хороший пример — риск антителозависимого усиления инфекции (ADE), при котором возникает теоретический риск, что антитела из вакцины, предназначенные для борьбы с одним штаммом коронавируса, будут облегчать инфекцию другим штаммом коронавируса. Учёные не до конца понимают, какие именно свойства вакцин провоцируют ADE, поэтому приходится просто экспериментировать и смотреть, есть этот эффект или его нет. Проверка на ADE тоже занимает время.

И хотя разработчики вакцин (особенно новых — векторных и вакцин на основе РНК и ДНК) делают всё, чтобы ускорить процесс разработки, этап проверки вакцин на людях — клинические испытания — пропускать ни в коем случае нельзя.

Клинические испытания (даже ускоренные) занимают минимум несколько месяцев. Требуется набрать несколько десятков (а лучше сотен) участников, случайным образом (это называется рандомизация) включить их в опытную группу, которая получит вакцину, и контрольную группу, которая получит плацебо, и наблюдать за этими людьми как минимум 3-4 месяца, чтобы успели проявиться возможные побочные эффекты.

Когда ждать появления вакцины

В «докоронавирусную эру» разработка одной вакцины в среднем занимала более 10 лет. Единственное исключение — вакцина против вируса Эбола: с разработкой этого лекарства компания Merck справилась за рекордные пять лет. Но в разгар пандемии COVID-19 такого количества времени нет ни у одной из стран мира, поэтому регулирующие государственные органы и фармацевтические компании ускоряют разработку и тестирование кандидатов в вакцины — например, правительство США надеется получить готовое лекарство к началу 2021 года.

Если подобное действительно получится, это будет невиданный шаг вперёд для всего человечества. Однако это всё-таки не слишком вероятно. Учитывая всё вышеизложенное, вакцину от COVID-19 не имеет смысла ждать раньше чем через 12–18 месяцев.

Кстати, недавно появился специальный сайт, который агрегирует информацию от ВОЗ, американских центров по контролю и профилактике заболеваний CDC и из других источников: COVID-19 Vaccine & Therapeutics Tracker. На сайте удобно следить за разработкой вакцин в реальном времени.

* Текст распространяется по лицензии Creative Commons CC BY. Источник: Meduza. Редакторы The Challenger перепроверили и актуализировали данные по статусу разработки вакцин в соответствии с документом Всемирной организации здравоохранения DRAFT landscape of COVID-19 candidate vaccines от 11 мая 2020 года.