Чем отличается МРТ от рентгена
Второе отличие состоит в принципе получения изображений. МРТ основана на регистрации отражённых радиочастотных импульсов протонов, колеблющихся в одной фазе (резонансе). То есть сначала нужно заставить все протоны колебаться в резонансе (для этого пациент помещается в сильное магнитное поле), после чего воздействовать на них радиочастотными импульсами, измерить отражённый радиосигнал и на его основе вычислить МР-томограмму. Как видите, ионизирующее излучение в МРТ не используется — в отличие от рентгенографии и компьютерной томографии, которые основаны на воздействии ионизирующего излучения (рентгеновского) и регистрации на плёнке или цифровом детекторе степени его поглощения в тканях.
Из этого возникает третье отличие методов: контрастность МРТ очень высока в структурах, содержащих водород (то есть вода и органические молекулы, из которых состоит большинство тканей в организме), и низка в структурах, его не содержащих (например воздух в лёгких и кальций в костях). В то время как на рентгенограммах и компьютерных томограммах без дополнительного контрастирования крайне сложно различить нюансы строения мягкотканных структур, однако лёгкие и кости визуализируются отлично.
Визуализация структур среднего уха (слуховые косточки, барабанная полость и так далее) почти невозможна на МРТ — орган слуха в основном состоит из костной ткани и воздушных полостей, поэтому главным методом визуализации височной кости служит компьютерная томография, основанная на рентгеновском излучении. МРТ не позволяет делать функциональные исследования, например снимки позвоночника в сгибании/разгибании для выявления нестабильности сочленения между позвонками или снимки стопы под нагрузкой в положении стоя для диагностики плоскостопия — в таких ситуациях рентгенограммы по-прежнему актуальны.
Однако с развитием высокотехнологичных методов лечения требуется и более высокотехнологичная диагностика. Современный нейрохирург в обычных условиях не пойдёт на удаление опухоли мозга без качественно выполненной МРТ головного мозга. Современный травматолог перед артроскопией обязательно назначит МРТ сустава, а гинеколог перед лапароскопической резекцией яичника — МРТ малого таза. Врачам больше не хочется оперировать «вслепую», по принципу «сейчас разрежем и посмотрим». Нередко такие операции заканчиваются сразу после разреза, например, когда «внезапно» перед глазами открывается неоперабельная опухоль или случайно пересекается «сверхкомплектный» сосуд, который можно было выявить на предоперационном исследовании. В результате пациент теряет кровь или орган, а операционная бригада — время и нервы в операционной. Зачастую большая популярность МРТ связана именно с желанием иметь точную «карту местности» при планировании серьёзного лечения.
Какой из двух методов — рентген или МРТ — представляет опасность для здоровья человека
Внутри аппарата МРТ под воздействием магнитного поля могут повреждаться электронные устройства (например кардиостимуляторы) и смещаться ферромагнитные предметы (например неизвлечённые осколки после пулевого или минно-взрывного ранения). Так что перед тем как пациент попадает на исследование, его тщательно опрашивают и обследуют для исключения противопоказаний.
В целом же МРТ — абсолютно безвредный метод, и частота его применения не ограничена.
Чем опасно ионизирующее излучение
Начнём с того, что у лучевой нагрузки есть своя единица измерения — миллизиверт (мЗв/mSv). Один мЗв — это:
- 4—8 рентгеновских снимков;
- 1-2 низкодозовых КТ лёгких;
- 0,05—0,5 обычных диагностических КТ-исследований;
- 20 трансатлантических перелётов (один перелёт — ~0,05 мЗв);
- 100—120% естественной годовой фоновой дозы, которую мы получаем от природных источников радиации (земля, гранит, бетон, космическая радиация и прочее).
В каких ещё методах диагностики используется ионизирующее излучение
Существует целая группа радионуклидных исследований (сцинтиграфия, ПЭТ, ОФЭКТ) — они основаны не на регистрации ослабления внешнего рентгеновского излучения, а на введении в организм радиоактивных препаратов, которые, накапливаясь в поражённых органах и тканях, выделяют заряженные частицы (например позитроны). Эти частицы улавливаются специальными детекторами, в результате чего строится проекционное (сцинтиграфия) или посрезовое (ПЭТ, ОФЭКТ) изображения части тела, по которому можно определить уровень обмена веществ в различных тканях. Так как метаболизм в опухолях существенно отличается от метаболизма нормальных тканей, радионуклидные методы особенно широко применяются в онкологии, хотя у них есть и другие области применения.
Какие противопоказания существуют для проведения МРТ и рентгена
- установленный кардиостимулятор или другие несъёмные электронные медицинские устройства;
- наличие в зоне исследования осколков или других ферромагнитных объектов (некоторые установленные в XX или начале XXI века ортопедические металлоконструкции, отдельные виды протезов сердечных клапанов, внутричерепные сосудистые клипсы).
Для рентгенографии абсолютных противопоказаний нет: по жизненным показаниям её можно выполнять и беременным, и новорождённым. Однако ввиду большей подверженности детского организма риску ионизирующего излучения, рентгеновские обследования детям и беременным стараются минимизировать.
Федеральный закон «О радиационной безопасности населения» N 3-ФЗ от 09.01.96 и СП 2.6.1.2612-10 в части IV «Радиационная безопасность при медицинском облучении» гласят: «Дозы, получаемые пациентами при проведении рентгенорадиологических процедур, не нормируются».